|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции: 1) съедает какую-то котлету вместе со всеми сидящими на ней мухами; 2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух). Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу. Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 350]
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 350] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|