Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 19 задач
Версия для печати
Убрать все задачи

Набор из 2003 положительных чисел таков, что для любых двух входящих в него чисел a и b ( a>b ) хотя бы одно из чисел a+b или a-b тоже входит в набор. Докажите, что если данные числа упорядочить по возрастанию, то разности между соседними числами окажутся одинаковыми.

Вниз   Решение


а) На плоскости даны n векторов, длина каждого из которых равна 1. Сумма всех n векторов равна нулевому вектору. Докажите, что векторы можно занумеровать так, чтобы при всех k = 1, 2, ..., n выполнялось следующее условие: длина суммы первых k векторов не превышает 3.

б) Докажите аналогичное утверждение для n векторов с суммой 0, длина каждого из которых не превосходит 1.

в) Можно ли заменить число 3 в пункте а) меньшим? Постарайтесь улучшить оценку и в пункте б).

ВверхВниз   Решение


Ученики 7 класса решали две задачи. В конце занятия учитель составил четыре списка: I – решивших первую задачу, II – решивших только одну задачу, III – решивших по крайней мере одну задачу, IV – решивших обе задачи. Какой из списков самый длинный? Могут ли два списка совпадать по составу? Если да, то какие?

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. Докажите, что ломаная AOC делит ABCD на две фигуры равной площади.

ВверхВниз   Решение


Задан массив X [1:m]. Найти длину k самой длинной ''пилообразной (зубьями вверх)'' последовательности идущих подряд чисел:

X [p+1]< X [p+2]>X [p+3]<...> X[p+k].

ВверхВниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD. P - точка пересечения диагоналей.
Найдите сумму квадратов диагоналей, если известны длина отрезка OP и радиус окружности R.

ВверхВниз   Решение


Дано натуральное число $n$. Для произвольного числа $x$ рассмотрим сумму $$ Q(x)=\lfloor x\rfloor+\left\lfloor\frac{x}{2}\right\rfloor+\left\lfloor\frac{x}{3}\right\rfloor+\left\lfloor\frac{x}{4}\right\rfloor+\cdots+\left\lfloor\frac{x}{10^{n}}\right\rfloor . $$ Найдите разность $Q\left(10^{n}\right)-Q\left(10^{n}-1\right)$. (Здесь $\lfloor x\rfloor$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)

ВверхВниз   Решение


Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?

ВверхВниз   Решение


Выпуклый многоугольник разрезан на выпуклые семиугольники (так, что каждая сторона многоугольника является стороной одного из семиугольников). Докажите, что найдутся четыре соседние вершины многоугольника, принадлежащие одному семиугольнику.

ВверхВниз   Решение


Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$

ВверхВниз   Решение


Если в каждой вершине выпуклого многогранника сходятся не менее чем четыре ребра, то хотя бы одна из его граней – треугольник.
Докажите это.

ВверхВниз   Решение


Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.

ВверхВниз   Решение


Дан остроугольный треугольник ABC. Постройте точки X и Y на сторонах AB и BC так, что a) AX = XY = YC; б) BX = XY = YC.

ВверхВниз   Решение


Является ли число 12345678926 квадратом?

ВверхВниз   Решение


Решите задачу 16.18 с помощью гомотетии.

ВверхВниз   Решение


Вводится два числа. В выходной файл записать их сумму.

Пример входного файла
2 3

Пример выходного файла
5

ВверхВниз   Решение


Точка M лежит на стороне AB треугольника ABC,  AM = a,  BM = b,  CM = c,  c < a,  c < b.
Найдите наименьший радиус описанной окружности такого треугольника.

ВверхВниз   Решение


Даны угол ABC и точка M внутри его. Постройте окружность, касающуюся сторон угла и проходящую через точку M.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 57994

Тема:   [ Гомотетия: построения и геометрические места точек ]
Сложность: 3
Классы: 9

Даны угол ABC и точка M внутри его. Постройте окружность, касающуюся сторон угла и проходящую через точку M.
Прислать комментарий     Решение


Задача 57996

Тема:   [ Гомотетия: построения и геометрические места точек ]
Сложность: 3
Классы: 9

Дан остроугольный треугольник ABC. Постройте точки X и Y на сторонах AB и BC так, что a) AX = XY = YC; б) BX = XY = YC.
Прислать комментарий     Решение


Задача 57998

Тема:   [ Гомотетия: построения и геометрические места точек ]
Сложность: 3
Классы: 9

Решите задачу 16.18 с помощью гомотетии.
Прислать комментарий     Решение


Задача 57999

Тема:   [ Гомотетия: построения и геометрические места точек ]
Сложность: 3
Классы: 9

Постройте на стороне BC данного треугольника ABC такую точку, что прямая, соединяющая основания перпендикуляров, опущенных из этой точки на стороны AB и AC, параллельна BC.
Прислать комментарий     Решение


Задача 32140

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Гомотетичные окружности ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

На плоскости даны две окружности одна внутри другой. Построить такую точку O, что одна окружность получается из другой гомотетией относительно точки O (другими словами – чтобы растяжение плоскости от точки O с некоторым коэффициентом переводило одну окружность в другую).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .