ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано n$ \ge$4 точек, причем никакие три из них не лежат на одной прямой. Докажите, что если для любых трех из них найдется четвертая (тоже из данных), с которой они образуют вершины параллелограмма, то n = 4.

   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 488]      



Задача 111876

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 6-
Классы: 8,9,10

Автор: Карасев Р.

На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых.
Прислать комментарий     Решение


Задача 58052

Тема:   [ Наименьший или наибольший угол ]
Сложность: 6
Классы: 8,9

а) Длины биссектрис треугольника не превосходят 1. Докажите, что его площадь не превосходит 1/$ \sqrt{3}$.
б) На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1. Докажите, что если длины отрезков AA1, BB1 и CC1 не превосходят 1, то площадь треугольника ABC не превосходит 1/$ \sqrt{3}$.
Прислать комментарий     Решение


Задача 58060

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9

На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
Прислать комментарий     Решение


Задача 58061

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9

На плоскости дано n точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2n - 3.
Прислать комментарий     Решение


Задача 58072

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 6
Классы: 8,9

На плоскости дано n$ \ge$4 точек, причем никакие три из них не лежат на одной прямой. Докажите, что если для любых трех из них найдется четвертая (тоже из данных), с которой они образуют вершины параллелограмма, то n = 4.
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .