ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 488]      



Задача 58070

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На плоскости дано конечное число точек. Докажите, что из них всегда можно выбрать точку, для которой ближайшими к ней являются не более трех данных точек.
Прислать комментарий     Решение


Задача 58071

Тема:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 5
Классы: 8,9

На столе расположено n картонных и n пластмассовых квадратов, причем никакие два картонных и никакие два пластмассовых квадрата не имеют общих точек, в том числе и точек границы. Оказалось, что множество вершин картонных квадратов совпадает с множеством вершин пластмассовых квадратов. Обязательно ли каждый картонный квадрат совпадает с некоторым пластмассовым?
Прислать комментарий     Решение


Задача 58078

Темы:   [ Принцип крайнего (прочее) ]
[ Теорема Хелли ]
Сложность: 5
Классы: 8,9,10

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.
Прислать комментарий     Решение


Задача 58079

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 5
Классы: 8,9

Дан выпуклый многоугольник A1...An. Докажите, что описанная окружность некоторого треугольника AiAi + 1Ai + 2 содержит весь многоугольник.
Прислать комментарий     Решение


Задача 109579

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Индукция в геометрии ]
[ Выпуклые многоугольники ]
[ Обход графов ]
Сложность: 5
Классы: 9,10,11

Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk,  k ≠ i, j.
Докажите, что за несколько прыжков кузнечик сможет попасть из каждой точки Ap в любую точку Aq.
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .