ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа. Стороны выпуклого пятиугольника ABCDE продолжили так,
что образовалась пятиконечная звезда
AHBKCLDMEN (рис.).
Около треугольников — лучей звезды описали окружности. Докажите,
что пять точек пересечения этих окружностей, отличных от A, B, C,
D, E, лежат на одной окружности.
Длины всех сторон прямоугольного треугольника
являются целыми числами, причем наибольший общий делитель
этих чисел равен 1. Докажите, что его катеты равны 2mn
и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.
Даны окружность S и две хорды AB и CD.
Циркулем и линейкой постройте на окружности такую точку X,
чтобы прямые AX и BX высекали на CD отрезок
а) имеющий данную длину a; б) делящийся пополам в данной
точке E хорды CD.
|
Страница: 1 2 >> [Всего задач: 9]
Даны окружность, прямая и точки A, A', B, B', C, C', M,
лежащие на этой прямой. Согласно задачам 30.1
и 30.3 существует единственное проективное преобразование
данной прямой на себя, отображающее точки A, B, C соответственно
в A', B', C'. Обозначим это преобразование через P.
Постройте при помощи одной линейки а) точку P(M);
б) неподвижные точки отображения P (задача Штейнера).
Даны две прямые l1 и l2 и две точки A и B, не
лежащие на этих прямых. Циркулем и линейкой постройте
на прямой l1 такую точку X, чтобы прямые AX и BX
высекали на прямой l2 отрезок, а) имеющий данную длину a;
б) делящийся пополам в данной точке E прямой l2.
Точки A и B лежат на прямых a и b соответственно,
а точка P не лежит ни на одной из этих прямых. Циркулем
и линейкой проведите через P прямую, пересекающую прямые a
и b в точках X и Y соответственно таких, что длины
отрезков AX и BY имеют а) данное отношение; б) данное
произведение.
Циркулем и линейкой проведите через данную точку прямую,
на которой три данные прямые высекают равные отрезки.
Даны окружность S и две хорды AB и CD.
Циркулем и линейкой постройте на окружности такую точку X,
чтобы прямые AX и BX высекали на CD отрезок
а) имеющий данную длину a; б) делящийся пополам в данной
точке E хорды CD.
Страница: 1 2 >> [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке