Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

В треугольнике ABC угол A больше угла B. Докажите, что длина стороны BC больше половины длины стороны AB.

Вниз   Решение


31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал?

ВверхВниз   Решение


Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.

ВверхВниз   Решение


Пусть число m имеет вид  m = 2a5bm1,  где  (10, m1) = 1.  Положим  k = max {a, b}.
Докажите, что период дроби 1/m начинается с (k+1)-й позиции после запятой, и имеет такую же длину, как и период дроби 1/m1.

ВверхВниз   Решение


Найти все такие натуральные n, для которых числа 1/n и 1/n+1 выражаются конечными десятичными дробями.

ВверхВниз   Решение


Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.

ВверхВниз   Решение


Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

ВверхВниз   Решение


Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 330]      



Задача 60304

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство для натуральных  n > 1:  

Прислать комментарий     Решение

Задача 60306

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9

Докажите неравенство:  2n > n.

Прислать комментарий     Решение

Задача 60311

Темы:   [ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство  2m+n–2mn,  где m и n – натуральные числа.

Прислать комментарий     Решение

Задача 60286

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите тождество: $ {\dfrac{1^2}{1\cdot3}}$ + $ {\dfrac{2^2}{3\cdot5}}$ +...+ $ {\dfrac{n^2}{(2n-1)(2n+1)}}$ = $ {\dfrac{n(n+1)}{2(2n+1)}}$.

Прислать комментарий     Решение

Задача 60284

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3-
Классы: 8,9,10

Докажите тождество: 13 + 23 +...+ n3 = (1 + 2 +...+ n)2.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .