Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Решить в целых числах уравнение  x² = 14 + y².

Вниз   Решение


а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

ВверхВниз   Решение


Может ли сумма цифр точного квадрата равняться 1970?

ВверхВниз   Решение


Автор: Tran Quang Hung

Дан треугольник ABC и точка P. Точки A', B', C' – проекции P на прямые BC, CA, AB. Прямая, проходящая через P и параллельная AB, вторично пересекает описанную окружность треугольника PA'B' в точке C1. Точки A1, B1 определены аналогично. Докажите, что
  а) прямые AA1, BB1, CC1 пересекаются в одной точке;
  б) треугольники ABC и A1B1C1 подобны.

ВверхВниз   Решение


Пусть p и q – различные простые числа. Докажите, что
  а)  pq + qp ≡ p + q (mod pq);

  б)   – чётное число, если  p, q ≠ 2.

ВверхВниз   Решение


Пусть P(xn) делится на  x – 1.  Докажите, что P(xn) делится на  xn – 1.

ВверхВниз   Решение


Найдите наименьшее число, записываемое одними единицами, делящееся на (в записи 100 троек).

ВверхВниз   Решение


Решить в целых числах уравнение  x² + y² = 4z – 1.

ВверхВниз   Решение


а) Дано шестизначное число  abcdef,  причём  abc + def  делится на 37. Докажите, что и само число делится на 37.
б) Сформулируйте и докажите признак делимости на 37.

ВверхВниз   Решение


Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности.

ВверхВниз   Решение


С помощью двусторонней линейки постройте центр данной окружности, диаметр которой больше ширины линейки.

ВверхВниз   Решение


Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр.

ВверхВниз   Решение


Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.

ВверхВниз   Решение


Докажите, что квадрат можно разрезать на n квадратов для любого n, начиная с шести.

ВверхВниз   Решение


Даны две параллельные прямые и отрезок, лежащий на одной из них. Удвойте этот отрезок с помощью одной линейки.

ВверхВниз   Решение


Сколькими способами можно расселить 15 гостей в четырёх комнатах, если требуется, чтобы ни одна из комнат не осталась пустой?

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 171]      



Задача 73575

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Подсчет двумя способами ]
[ Сочетания и размещения ]
[ Рекуррентные соотношения (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5
Классы: 8,9,10

Найдите суммы
  а)   1·n + 2(n – 1) + 3(n – 2) + ... + n·1.
  б)   Sn,k = (1·2·...·k)·(n(n – 1)...(nk + 1)) + (2·3·...·(k + 1))·((n – 1)(n – 2)...(nk)) + ... + ((nk + 1)(nk + 2)...·n)·(k(k – 1)·...·1).

Прислать комментарий     Решение

Задача 116146

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
[ Ломаные ]
[ Сочетания и размещения ]
Сложность: 3
Классы: 7,8,9

Какое наибольшее количество точек самопересечения может иметь замкнутая ломаная, в которой 7 звеньев?

Прислать комментарий     Решение

Задача 30732

Темы:   [ Раскладки и разбиения ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Правило произведения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 8,9

Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей,
  а) считаются различными?
  б) считаются тождественными?

Прислать комментарий     Решение

Задача 60442

Темы:   [ Формула включения-исключения ]
[ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 8,9,10

Сколькими способами можно расселить 15 гостей в четырёх комнатах, если требуется, чтобы ни одна из комнат не осталась пустой?

Прислать комментарий     Решение

Задача 65359

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Условная вероятность ]
[ Сочетания и размещения ]
[ Задачи с ограничениями ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 9,10,11

Вдоль дороги стоит 9 фонарей. Если перегорел один из них, а соседние светят, то дорожная служба не беспокоится. Но если перегорают два фонаря подряд, то дорожная служба сразу меняет все перегоревшие фонари. Каждый фонарь перегорает независимо от других.
  а) Найдите вероятность того, что при очередной замене придётся поменять ровно 4 фонаря.
  б) Найдите математическое ожидание числа фонарей, которые придётся поменять при очередной замене.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .