ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Число e определяется равенством    Докажите, что

а)  

б)    где  0 < rn ≤ 1/n!n;

в)  e – иррациональное число.

   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



Задача 60873

 [Иррациональность чмсла e]
Темы:   [ Число e ]
[ Рациональные и иррациональные числа ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Число e определяется равенством    Докажите, что

а)  

б)    где  0 < rn ≤ 1/n!n;

в)  e – иррациональное число.

Прислать комментарий     Решение

Задача 60874

 [Число e и комбинаторика]
Темы:   [ Теория графов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Число e ]
[ Раскраски ]
Сложность: 4
Классы: 9,10,11

Дано N точек, никакие три из которых не лежат на одной прямой. Каждые две из этих точек соединены отрезком, и каждый отрезок окрашен в один из k цветов. Докажите, что если  N > [k!e],  то среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет.


Прислать комментарий     Решение

Задача 64415

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Итерации ]
[ Ограниченность, монотонность ]
Сложность: 4

Решите систему
    y2 = 4x3 + x – 4,
    z2 = 4y3 + y – 4,
    x2 = 4z3 + z – 4.

Прислать комментарий     Решение

Задача 65327

Темы:   [ Дискретное распределение ]
[ Условная вероятность ]
[ Предел последовательности, сходимость ]
Сложность: 4
Классы: 10,11

Илья Муромец встречает трёхголового Змея Горыныча. И начинается битва. Каждую минуту Илья отрубает Змею одну голову. С вероятностью ¼ на месте срубленной головы вырастает две новых, с вероятностью ⅓ – только одна новая голова и с вероятностью 5/12 – ни одной головы. Змей считается побеждённым, если у него не осталось ни одной головы. Найдите вероятность того, что рано или поздно Илья победит Змея.

Прислать комментарий     Решение

Задача 111805

Темы:   [ Арифметическая прогрессия ]
[ Целая и дробная части. Принцип Архимеда ]
[ Ограниченность, монотонность ]
Сложность: 4
Классы: 9,10,11

Последовательность (an) задана условиями a1= 1000000 , an+1=n[]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .