ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сумма углов при одном из оснований трапеции равна 90°. Докажите равенства: Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника. Постройте равносторонний треугольник ABC так,
чтобы его вершины лежали на трех данных параллельных прямых.
С помощью одной двусторонней линейки:
Даны три попарно перпендикулярные прямые. Четвёртая прямая
образует с данными углы α , β , γ соответственно.
Докажите, что
Рассмотрим всевозможные равносторонние треугольники PKM,
вершина P которых фиксирована, а вершина K лежит в данном
квадрате. Найдите геометрическое место вершин M.
Дан параллелограмм ABCD и точка M. Через точки A, B, C
и D проведены прямые, параллельные прямым MC, MD, MA
и MB соответственно. Докажите, что они пересекаются в одной точке.
Дана окружность ω и точка A вне её. Через A проведены две прямые, одна из которых пересекает ω в точках B и C, а другая – в точках D и E (D лежит между A и E). Прямая, проходящая через D и параллельная BC, вторично пересекает ω в точке F, а прямая AF – в точке T. Пусть M – точка пересечения прямых ET и BC, а N – точка, симметричная A относительно M. Докажите, что описанная окружность треугольника DEN проходит через середину отрезка BC. На сторонах треугольника ABC внешним образом построены
правильные треугольники A1BC, AB1C и ABC1. Докажите,
что
AA1 = BB1 = CC1.
Средняя линия трапеции равна 5, а отрезок, соединяющий середины оснований, равен 3. Углы при большем основании трапеции равны 30° и 60°. Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке.Докажите, что ортоцентрическом тетраэдре общие перпендикуляры каждой пары противоположных рёбер пересекаются в одной точке. Решите уравнения а) φ(x) = x/2; б) φ(x) = x/3; φ(x) = x/4. Представьте в тригонометрической форме числа: |
Страница: 1 2 >> [Всего задач: 6]
Пусть z = x + iy, w = u + iv. Найдите
Докажите равенства:
Докажите равенства:
Представьте в тригонометрической форме числа:
Докажите, что если каждое из двух чисел является суммой квадратов двух целых чисел, то и их произведение является суммой квадратов двух целых чисел.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке