|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Через точку внутри вписанного четырёхугольника провели две прямые, делящие его на четыре части. Три из этих частей – вписанные четырёхугольники, причем радиусы описанных вокруг них окружностей равны. Докажите, что четвёртая часть – четырёхугольник, вписанный в окружность того же радиуса. Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных. Во что перейдёт треугольник с вершинами в точках: 0, 1 – i, 1 + i в результате преобразования |
Страница: 1 2 3 >> [Всего задач: 11]
Во что перейдёт треугольник с вершинами в точках: 0, 1 – i, 1 + i в результате преобразования
Во что перейдёт угол градусной меры α вершиной в начале координат в результате преобразования w = z³?
Каким геометрическим преобразованиям плоскости соответствуют следующие отображения:
Как представить в виде w = f(z) симметрию относительно прямой l, проходящей через начало координат под углом φ к оси Ox?
Представить гомотетию
Страница: 1 2 3 >> [Всего задач: 11] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|