ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существует следующий способ проверить, делится ли данное число N на
19: Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b). Докажите, что число 192021...7980 делится на 1980. Существует ли треугольник с высотами, равными 1, 2 и 3? В окружность радиуса 17 вписан четырёхугольник, диагонали которого взаимно перпендикулярны и находятся на расстоянии 8 и 9 от центра окружности. Найдите стороны четырёхугольника. Постройте образ квадрата с вершинами A(0, 0), B(0, 2), C(2, 2), D(2, 0) при следующих преобразованиях: |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 118]
Известно, что z + z–1 = 2 cos α.
Пусть z = e2πi/n = cos 2π/n + i sin 2π/n. Для произвольного целого a вычислите суммы
При каких n многочлен (x + 1)n – xn – 1 делится на:
Многочлен P(x) при всех действительных x принимает только
положительные значения.
Постройте образ квадрата с вершинами A(0, 0), B(0, 2), C(2, 2), D(2, 0) при следующих преобразованиях:
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 118]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке