ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что график многочлена
  а)  x³ + px;   б)  x³ + px + q;   в)  ax³ + bx² + cx + d
имеет центр симметрии.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



Задача 109554

Темы:   [ Целочисленные решетки (прочее) ]
[ Геометрия на клетчатой бумаге ]
[ Композиция параллельных переносов ]
[ Подсчет двумя способами ]
Сложность: 6-
Классы: 9,10,11

В клетках бесконечного листа клетчатой бумаги записаны действительные числа. Рассматриваются две фигуры, каждая из которых состоит из конечного числа клеток. Фигуры разрешается перемещать параллельно линиям сетки на целое число клеток. Известно, что для любого положения первой фигуры сумма чисел, записанных в накрываемых ею клетках, положительна. Докажите, что существует положение второй фигуры, при котором сумма чисел в накрываемых ею клетках положительна.
Прислать комментарий     Решение


Задача 109783

Темы:   [ Системы точек ]
[ Покрытия ]
[ Свойства параллельного переноса ]
[ Гомотетия помогает решить задачу ]
Сложность: 6
Классы: 10,11

На плоскости дано конечное множество точек X и правильный треугольник T . Известно, что любое подмножество X' множества X , состоящее из не более 9 точек, можно покрыть двумя параллельными переносами треугольника T . Докажите, что все множество X можно покрыть двумя параллельными переносами T .
Прислать комментарий     Решение


Задача 35025

Темы:   [ Разные задачи на разрезания ]
[ Индукция в геометрии ]
[ Пересекающиеся окружности ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

На какое наибольшее число частей могут разбить плоскость n окружностей?

Прислать комментарий     Решение

Задача 61254

Темы:   [ Кубические многочлены ]
[ Графики и ГМТ на координатной плоскости ]
[ Четность и нечетность ]
[ Перенос помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

Докажите, что график многочлена
  а)  x³ + px;   б)  x³ + px + q;   в)  ax³ + bx² + cx + d
имеет центр симметрии.

Прислать комментарий     Решение

Задача 67316

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Перенос помогает решить задачу ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ проведена высота $AH$. Точки $M$ и $N$  – середины отрезков $BH$ и $CH$. Докажите, что точка пересечения перпендикуляров, опущенных из точек $M$ и $N$ на прямые $AB$ и $AC$ соответственно, равноудалена от точек $B$ и $C$.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .