ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Кривая  4p³ + 27q² = 0  на фазовой плоскости Opq называется дискриминантной кривой уравнения  x³ + px + q = 0.  Прямые  ap + q + a³ = 0,  соответствующие трёхчленам, имеющим корень a, называются корневыми. Каково взаимное расположение на фазовой плоскости Opq дискриминантной кривой и корневых прямых? Имеют ли они общие точки, и, если имеют, то сколько?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 61268

 [Дискриминант кубического уравнения]
Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 4-
Классы: 9,10,11

Пусть уравнение  x³ + px + q = 0  имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения   D = (x1x2)²(x² – x3)²(x3x1)².

Прислать комментарий     Решение

Задача 61277

Темы:   [ Кубические многочлены ]
[ Геометрия комплексной плоскости ]
[ Теорема Виета ]
Сложность: 4-
Классы: 10,11

Докажите, что если корни многочлена  f(x) = x³ + ax² + bx + c  образуют правильный треугольник на комплексной плоскости, то многочлен
f'(x) = 3x² + 2ax + b  имеет двукратный корень, расположенный в центре этого треугольника.

Прислать комментарий     Решение

Задача 111878

Темы:   [ Кубические многочлены ]
[ Свойства коэффициентов многочлена ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Числа a, b, c таковы, что уравнение  x³ + ax² + bx + c = 0  имеет три действительных корня. Докажите, что если  –2 ≤ a + b + c ≤ 0,  то хотя бы один из этих корней принадлежит отрезку  [0, 2].
Прислать комментарий     Решение


Задача 61269

Темы:   [ Кубические многочлены ]
[ Теорема Виета ]
[ Симметрические многочлены ]
Сложность: 4
Классы: 9,10,11

Докажите, что равенство  4p³ + 27q² = 0  является необходимым и достаточным условием для совпадения по крайней мере двух корней уравнения
x³ + px + q = 0.

Прислать комментарий     Решение

Задача 61271

Темы:   [ Кубические многочлены ]
[ Фазовая плоскость коэффициентов ]
Сложность: 4
Классы: 10,11

Кривая  4p³ + 27q² = 0  на фазовой плоскости Opq называется дискриминантной кривой уравнения  x³ + px + q = 0.  Прямые  ap + q + a³ = 0,  соответствующие трёхчленам, имеющим корень a, называются корневыми. Каково взаимное расположение на фазовой плоскости Opq дискриминантной кривой и корневых прямых? Имеют ли они общие точки, и, если имеют, то сколько?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .