ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Найдите объём правильной треугольной пирамиды с боковым ребром b и углом α бокового ребра с плоскостью основания.

Вниз   Решение


Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?

ВверхВниз   Решение


а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство  A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn.

б) Докажите, что для треугольника верно и обратное утверждение: если на стороне A1A2 выбраны точки B1 и D2, на стороне A2A3 – точки B2 и D3, а на стороне A3A1 – точки B3 и D1 так, что  A1B1·A2B2·A3B3 = A1D1·A2D2· A3D3,  то, построив параллелограммы A1B1C1D1, A2B2C2D2 и A3B3C3D3, получим прямые A1C1, A2C2 и A3C3, пересекающиеся в одной точке.

ВверхВниз   Решение


Египтяне вычисляли площадь выпуклого четырёхугольника по формуле (a+c)(b+d)/4 , где a , b , c , d  — длины сторон в порядке обхода. Найдите все четырёхугольники, для которых эта формула верна.

ВверхВниз   Решение


Найдите наименьшее значение функции y = (x-21)ex-20 на отрезке [19;21] .

ВверхВниз   Решение


Найти такие целые числа x, y, z и t, что  x² + y² + z² + t² = 2xyzt.

ВверхВниз   Решение


Докажите справедливость оценок:

  а)  

  б)  

  в)  

  г)  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 32074

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Докажите, что произведение ста последовательных натуральных чисел не может быть сотой степенью натурального числа.

Прислать комментарий     Решение

Задача 35796

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Может ли произведение 2002 последовательных натуральных чисел являться 2002-й степенью натурального числа?

Прислать комментарий     Решение

Задача 61398

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 9,10,11

Докажите справедливость оценок:

  а)  

  б)  

  в)  

  г)  

Прислать комментарий     Решение

Задача 64673

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10,11

Произведение четырёх последовательных положительных нечётных чисел оканчивается на 9. Найдите две предпоследние цифры этого произведения.

Прислать комментарий     Решение

Задача 64788

Темы:   [ Произведения и факториалы ]
[ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8

Число    записали в виде несократимой дроби. Найдите её знаменатель.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .