Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 603]
В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.
Высота AK, биссектриса BL и медиана CM треугольника АВС пересекаются в точке О, причём АО = ВО.
Докажите, что треугольник АВС – равносторонний.
Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если DE = 5 см.
|
|
Сложность: 3+ Классы: 10,11
|
В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла?
|
|
Сложность: 3+ Классы: 10,11
|
Четырёхугольник АВСD – вписанный. Лучи АВ и DС пересекаются в точке M, а лучи ВС и AD –
в точке N. Известно, что ВМ = DN.
Докажите, что CM = CN.
Страница:
<< 81 82 83 84
85 86 87 >> [Всего задач: 603]