ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что отношение периметров подобных треугольников равно коэффициенту подобия.

Вниз   Решение


Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по стороне и диагоналям.

ВверхВниз   Решение


Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 115406

Темы:   [ Тригонометрические неравенства ]
[ Тригонометрический круг ]
[ Количество и сумма делителей числа ]
Сложность: 4
Классы: 10,11

Автор: Трушин Б.

Сколько раз функция   f(x) = cos x cos x/2 cos x/3 ... cos x/2009   меняет знак на отрезке  [0, 2009π/2] ?

Прислать комментарий     Решение

Задача 107784

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрический круг ]
Сложность: 3
Классы: 10,11

Известно число sin α. Какое наибольшее число значений может принимать  а) sin α/2,   б) sin α/3?
Прислать комментарий     Решение


Задача 64482

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Разложение на множители ]
[ Тригонометрический круг ]
Сложность: 3+
Классы: 10,11

Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?

Прислать комментарий     Решение

Задача 57076

Темы:   [ Правильные многоугольники ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрический круг ]
Сложность: 5
Классы: 9

Докажите, что при  n ≥ 6  правильный (n–1)-угольник нельзя так вписать в правильный n-угольник, чтобы на всех сторонах n-угольника, кроме одной, лежало ровно по одной вершине (n–1)-угольника.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .