ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Параллельный перенос
>>
Перенос помогает решить задачу
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2. б) Найдётся ли выпуклый многоугольник с таким свойством? Решение |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62]
Докажите, что
а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2. б) Найдётся ли выпуклый многоугольник с таким свойством?
Пусть H – ортоцентр остроугольного треугольника ABC. На касательной в точке H к описанной окружности ωA треугольника BHC взята точка XA, что AH = AXA и H ≠ XA. Аналогично определены точки XB и XC. Докажите, что треугольник XAXBXC и ортотреугольник треугольника ABC подобны.
Докажите, что любой квадратный трёхчлен можно представить в виде суммы двух квадратных трёхчленов с нулевыми дискриминантами.
Разрезать отрезок [–1, 1] на чёрные и белые отрезки так, чтобы интегралы от любой а) линейной функции; б) квадратного трёхчлена по белым и чёрным отрезкам были равны.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 62] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|