ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости расположено n На отрезке длиной 1 расположены попарно не пересекающиеся
отрезки, сумма длин которых равна p. Обозначим эту систему
отрезков A. Пусть B — дополнительная система отрезков
(отрезки систем A и B не имеют общих внутренних точек и
полностью покрывают данный отрезок). Докажите, что существует
параллельный перенос T, для которого пересечение B и T(A)
состоит из отрезков, сумма длин которых не меньше p(1 - p)/2.
Два пирата, Билл и Джон, имея каждый по 74 золотые монеты, решили сыграть в такую игру: они по очереди будут выкладывать на стол монеты, за один ход – одну, две или три, а выиграет тот, кто положит на стол сотую по счёту монету. Начинает Билл. Кто может выиграть в такой игре, независимо от того, как будет действовать соперник? Доказать, что существует бесконечно много натуральных чисел,
не представимых в виде Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
а) Стороны угла с вершиной C касаются окружности
в точках A и B. Из точки P, лежащей на окружности,
опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA
и AB. Докажите, что
PC12 = PA1 . PB1 и
PA1 : PB1 = PB2 : PA2.
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать? |
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 165]
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать?
Дана клетчатая полоса 1×N. Двое играют в следующую игру. На очередном ходу первый игрок ставит в одну из свободных клеток крестик, а второй – нолик. Не разрешается ставить в соседние клетки два крестика или два нолика. Проигрывает тот, кто не может сделать ход.
Дана клетчатая полоска (шириной в одну клетку), бесконечная в обе стороны. Две клетки полоски являются ловушками, между ними – N клеток, на одной из которых сидит кузнечик. На каждом ходу мы называем натуральное число, после чего кузнечик прыгает на это число клеток влево или вправо (по своему выбору). При каких N можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек, где бы он ни был изначально между ловушками и как бы ни выбирал направления прыжков? (Мы всё время видим, где сидит кузнечик.)
На числовой прямой в точке P сидит точечный кузнечик. Точки 0 и 1 – ловушки. На каждом ходу мы называем любое положительное число, после чего кузнечик прыгает влево или вправо (по своему выбору) на расстояние, равное этому числу. Для каких P можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек? (Мы всё время видим, где сидит кузнечик.)
Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 165]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке