Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 1027]
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что в кубе можно проделать отверстие, через которое можно
протащить куб таких же размеров.
Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по натуральному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?
|
|
Сложность: 4 Классы: 10,11
|
Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по положительному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?
|
|
Сложность: 4 Классы: 9,10,11
|
Из высот треугольника можно составить треугольник. Верно ли, что из его биссектрис также можно составить треугольник?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране 100 городов, между каждыми двумя городами осуществляется беспосадочный перелёт. Все рейсы платные и стоят положительное (возможно, нецелое) число тугриков. Для любой пары городов А и Б перелёт из А в Б стоит столько же, сколько перелёт из Б в А. Средняя стоимость перелёта равна 1 тугрику. Путешественник хочет облететь какие-нибудь m разных городов за m перелётов, начав и закончив в своём родном городе. Всегда ли ему удастся совершить такое путешествие, потратив на билеты не более m тугриков, если
а) m = 99;
б) m = 100?
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 1027]