ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1041]      



Задача 67125

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Стереографическая проекция ]
[ Правильные многоугольники ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно пять отмеченных точек, а через каждую отмеченную точку проходят ровно пять окружностей?
Прислать комментарий     Решение


Задача 67132

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно четыре отмеченных точки, а через каждую отмеченную точку проходят ровно четыре окружности?
Прислать комментарий     Решение


Задача 67153

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Для каждого из чисел 1, 19, 199, 1999 и т. д. изготовили одну отдельную карточку и записали на ней это число.

а) Можно ли выбрать не менее трёх карточек так, чтобы сумма чисел на них равнялась числу, все цифры которого, кроме одной, – двойки?

б) Пусть выбрали несколько карточек так, что сумма чисел на них равна числу, все цифры которого, кроме одной, – двойки. Какой может быть его цифра, отличная от двойки?
Прислать комментарий     Решение


Задача 67154

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разные задачи на разрезания ]
Сложность: 4
Классы: 7,8,9,10,11

Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?
Прислать комментарий     Решение


Задача 67254

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

В кабинете сидят N нерях, у каждого на его столе скопилось ненулевое количество мусора. Неряхи выходят обедать по одному (после возвращения предыдущего), а в это время каждый из остальных перекладывает половину мусора со своего стола на стол вышедшего. Может ли случиться, что после того, как все пообедали, количество мусора на столах ни у кого не изменится, если а) N = 2; б) N = 10?
Прислать комментарий     Решение


Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1041]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .