ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел. Решение |
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 488]
10 человек собрали вместе 46 грибов, причём известно, что нет двух человек, собравших одинаковое число грибов.
Среднее арифметическое десяти различных натуральных чисел равно 15. Найдите наибольшее значение наибольшего из этих чисел.
Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
В некотором королевстве было 32 рыцаря. Некоторые из них были вассалами
других (вассал может иметь только одного сюзерена, причём сюзерен всегда богаче
своего вассала). Рыцарь, имевший не менее четырёх вассалов, носил титул барона.
Какое наибольшее число баронов могло быть при этих условиях?
Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|