Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Автор: Струков С.

В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.

Вниз   Решение


Докажите, что существует треугольник, стороны которого равны и параллельны медианам данного треугольника.

ВверхВниз   Решение


Вписанная окружность треугольника A1A2A3 касается сторон A2A3, A3A1 и A1A2 в точках S1, S2 и S3 соответственно. Пусть O1, O2 и O3 – центры вписанных окружностей треугольников A1S2S3, A2S3S1 и A3S1S2 соответственно. Докажите, что прямые O1S1, O2S2 и O3S3 пересекаются в одной точке.

ВверхВниз   Решение


В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

ВверхВниз   Решение


В координатном пространстве провели все плоскости с уравнениями  x ± y ± z = n  (при всех целых n). Они разбили пространство на тетраэдры и октаэдры. Пусть точка  (x0, y0, z0)  с рациональными координатами не лежит ни в одной проведённой плоскости. Докажите, что найдётся натуральное k, при котором точка  (kx0, ky0, kz0)  лежит строго внутри некоторого октаэдра разбиения.

ВверхВниз   Решение


Точка К – середина гипотенузы АВ прямоугольного равнобедренного треугольника ABC. Точки L и М выбраны на катетах ВС и АС соответственно так, что  BL = СМ.  Докажите, что треугольник LMK – также прямоугольный равнобедренный.

ВверхВниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC  (∠ABC = 90°),  касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.

Вверх   Решение

Задачи

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1358]      



Задача 54844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Найдите AC, если известно, что  AM = 4,  BN = 9.

Прислать комментарий     Решение

Задача 54917

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружности с центрами O1 и O2 имеют общую хорду AB, $ \angle$AO1B = 60o. Отношение длины первой окружности к длине второй равно $ \sqrt{2}$. Найдите угол AO2B.

Прислать комментарий     Решение


Задача 56998

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 8,9

Вписанная окружность прямоугольного треугольника ABC касается гипотенузы AB в точке P, CH – высота треугольника ABC.
Докажите, что центр вписанной окружности треугольника ACH лежит на перпендикуляре, опущенном из точки P на AC.

Прислать комментарий     Решение

Задача 64601

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Диаметр, основные свойства ]
[ Средняя линия треугольника ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC угол A прямой, M – середина BC, AH – высота. Прямая, проходящая через точку M перпендикулярно AC, вторично пересекает описанную окружность треугольника AMC в точке P. Докажите, что отрезок BP делит отрезок AH пополам.

Прислать комментарий     Решение

Задача 64738

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9,10

Окружность, вписанная в прямоугольный треугольник ABC  (∠ABC = 90°),  касается сторон AB, BC, AC в точках C1, A1, B1 соответственно. Вневписанная окружность касается стороны BC в точке A2. A0 – центр окружности, описанной около треугольника A1A2B1; аналогично определяется точка C0. Найдите угол A0BC0.

Прислать комментарий     Решение

Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 1358]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .