ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69]
По шоссе в одну сторону движутся пешеход и велосипедист, в другую сторону – телега и машина. Все участники движутся с постоянными скоростями (каждый со своей). Велосипедист сначала обогнал пешехода, потом через некоторое время встретил телегу, а потом ещё через такое же время встретил машину. Машина сначала встретила велосипедиста, потом через некоторое время встретила пешехода, и потом ещё через такое же время обогнала телегу. Велосипедист обогнал пешехода в 10 часов, а пешеход встретил машину в 11 часов. Когда пешеход встретил телегу?
В остроугольном треугольнике ABC проведены высоты BD и CE. Из вершин B и C на прямую ED опущены перпендикуляры BF и CG. Докажите, что EF = DG.
Дан треугольник ABC. На его сторонах AB и BC зафиксированы точки C1 и A1 соответственно. Найдите на описанной окружности треугольника ABC такую точку P, что расстояние между центрами описанных окружностей треугольников APC1 и CPA1 минимально.
Ортоцентр H треугольника ABC лежит на вписанной в треугольник окружности.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 69] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|