Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Квадратный трёхчлен  x² + bx + c  имеет два действительных корня. Каждый из трёх его коэффициентов увеличили на 1.
Могло ли оказаться, что оба корня трёхчлена также увеличились на 1?

Вниз   Решение


Решите систему:   .

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 264]      



Задача 64713

Темы:   [ Квадратный трехчлен (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.

Прислать комментарий     Решение

Задача 64719

Тема:   [ Квадратные уравнения. Теорема Виета ]
Сложность: 3
Классы: 9,10,11

Автор: Жуков Г.

Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
Докажите, что корни трёхчлена  f(x) имеют разные знаки.

Прислать комментарий     Решение

Задача 64888

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 10,11

Решите систему:   .

Прислать комментарий     Решение

Задача 65085

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9

Про три положительных числа известно, что если выбрать одно из них и прибавить к нему сумму квадратов двух других, то получится одна и та же сумма, независимо от выбранного числа. Докажите, что какие-то два из исходных чисел совпадают.

Прислать комментарий     Решение

Задача 65431

Тема:   [ Квадратный трехчлен (прочее) ]
Сложность: 3
Классы: 9,10,11

Существует ли квадратный трёхчлен, который при  x = 2014, 2015, 2016  принимает значения 2015, 0, 2015 соответственно?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 264]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .