ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

   Решение

Задачи

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 603]      



Задача 57000

Темы:   [ Вписанные и описанные окружности ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса AD. Пусть O, O1 и O2 – центры описанных окружностей треугольников ABC, ABD и ACD.
Докажите, что OO1 = OO2.

Прислать комментарий     Решение

Задача 64327

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
Сложность: 3+
Классы: 7,8

Высота AK, биссектриса BL и медиана CM треугольника АВС пересекаются в точке О, причём  АО = ВО.
Докажите, что треугольник АВС – равносторонний.

Прислать комментарий     Решение

Задача 64543

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3+

Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если  DE = 5 см.

Прислать комментарий     Решение

Задача 64672

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 10,11

В каком отношении делит площадь прямоугольной трапеции, описанной около окружности, биссектриса её острого угла?

Прислать комментарий     Решение

Задача 64892

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Точка Микеля ]
Сложность: 3+
Классы: 10,11

Четырёхугольник АВСD – вписанный. Лучи АВ и пересекаются в точке M, а лучи ВС и AD – в точке N. Известно, что  ВМ = DN.
Докажите, что  CM = CN.

Прислать комментарий     Решение

Страница: << 81 82 83 84 85 86 87 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .