Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 603]
Вершину A параллелограмма ABCD соединили отрезками с серединами сторон BC и CD. Один из этих отрезков оказался вдвое длиннее другого. Определите, каким является угол ВАD: острым, прямым или тупым.
Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что A1H = C1H.
На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что AB = AK. Отрезок AK пересекает биссектрису CL в её середине.
Найдите острые углы треугольника ABC.
Выпуклый пятиугольник ABCDE таков, что AB || CD, BC || AD, AC || DE, CE ⊥ BC. Докажите, что EC – биссектриса угла BED.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть ABCD – трапеция, в которой углы A и B прямые,
AB = AD, CD = BC + AD, BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.
Страница:
<< 82 83 84 85
86 87 88 >> [Всего задач: 603]