Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.

Вниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение радиуса вписанной окружности к расстоянию между центрами вписанной и описанной окружностей равно равно m. Найдите углы треугольника.

ВверхВниз   Решение


Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью 2 - $ \sqrt{2}$ и $ \sqrt{2}$, перелить из одной в другую ровно 1 литр?

ВверхВниз   Решение


Найдите все значения x, удовлетворяющие неравенству  (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4aa² < 0  хотя бы при одном значении a из отрезка  [–1, 2].

ВверхВниз   Решение


В одной американской фирме каждый служащий является либо демократом, либо республиканцем. После того как один из республиканцев решил стать демократом, тех и других в фирме стало поровну. Затем ещё три республиканца решили стать демократами, и тогда демократов стало вдвое больше чем республиканцев. Сколько служащих в этой фирме?

ВверхВниз   Решение


Автор: Dadgarnia A.

В треугольнике $ABC$ $\angle A= 45^{\circ}$. Точка $A'$ диаметрально противоположна $A$ на описанной окружности треугольника. Точки $E$, $F$ на сторонах $AB$, $AC$ соответственно таковы. что $A'B=BE$, $A'C=CF$. Пусть $K$ – вторая точка пересечения окружностей $AEF$ и $ABC$. Докажите, что прямая $EF$ делит пополам отрезок $A'K$.

ВверхВниз   Решение


Дан треугольник ABC, все углы которого меньше φ, где  φ < /3.
Докажите, что в пространстве существует точка, из которой все стороны треугольника ABC видны под углом φ.

ВверхВниз   Решение


Известно, что Z1 + ... + Zn = 0, где Zk — комплексные числа. Доказать, что среди этих чисел найдутся два таких, что разность их аргументов больше или равна 120o.

ВверхВниз   Решение


Из произвольной точки M катета BC прямоугольного треугольника ABC на гипотенузу AB опущен перпендикуляр MN. Докажите, что  $ \angle$MAN = $ \angle$MCN.

ВверхВниз   Решение


Докажите следующие формулы:

an+1bn+1 = (a – b)(an + an–1b + ... + bn);

a2n+1 + b2n+1 = (a + b)(a2na2n–1b + a2n–2b2 – ... + b2n).

ВверхВниз   Решение


В трёх ящиках лежат орехи. В первом ящике на 6 кг орехов меньше, чем в двух других вместе. А во втором – на 10 кг меньше, чем в двух других вместе. Сколько орехов в третьем ящике?

ВверхВниз   Решение


Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 201]      



Задача 64990

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 2
Классы: 7,8,9

Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Сможет ли Петя однозначно определить Васино число?

Прислать комментарий     Решение

Задача 88063

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В трёх ящиках лежат орехи. В первом ящике на 6 кг орехов меньше, чем в двух других вместе. А во втором – на 10 кг меньше, чем в двух других вместе. Сколько орехов в третьем ящике?

Прислать комментарий     Решение

Задача 88256

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 5,6,7,8

В одной американской фирме каждый служащий является либо демократом, либо республиканцем. После того как один из республиканцев решил стать демократом, тех и других в фирме стало поровну. Затем ещё три республиканца решили стать демократами, и тогда демократов стало вдвое больше чем республиканцев. Сколько служащих в этой фирме?

Прислать комментарий     Решение

Задача 88298

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 2
Классы: 7,8

Решить уравнение  x8 + 4x4 + x² + 1 = 0.

Прислать комментарий     Решение

Задача 104051

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 7,8

Купец продаёт двух коней с сёдлами, причём цена одного седла 120 рублей, а другого – 25 рублей. Первый конь с хорошим седлом втрое дороже другого с дешёвым, а другой конь с хорошим седлом вдвое дешевле первого коня с дешёвым. Какова цена каждого коня?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .