ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 112]      



Задача 107984

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Индукция (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 4
Классы: 8,9,10

Найдите x1000, если  x1 = 4,  x2 = 6,  и при любом натуральном  n ≥ 3  xn – наименьшее составное число, большее   2xn–1xn–2.

Прислать комментарий     Решение

Задача 109555

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Деление с остатком ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 8,9,10,11

Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n  an+1 = an + bn,  где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки.

Прислать комментарий     Решение

Задача 109842

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Индукция (прочее) ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 1,2

Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям     при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то  xn > yn  при каком-нибудь натуральном n.

Прислать комментарий     Решение

Задача 65210

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Двоичная система счисления ]
[ Производящие функции ]
Сложность: 4+
Классы: 10,11

День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?

Прислать комментарий     Решение

Задача 109692

Темы:   [ Рекуррентные соотношения (прочее) ]
[ НОД и НОК. Взаимная простота ]
[ Числа Фибоначчи ]
[ Ограниченность, монотонность ]
[ Монотонность и ограниченность ]
Сложность: 4+
Классы: 9,10,11

Найдите все бесконечные ограниченные последовательности натуральных чисел a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .