Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 112]
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите x1000, если x1 = 4, x2 = 6, и при любом натуральном n ≥ 3 xn – наименьшее составное число, большее
2xn–1 – xn–2.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дана последовательность натуральных чисел a1, a2, ..., an, в которой a1 не делится на 5 и для всякого n an+1 = an + bn, где bn – последняя цифра числа an. Докажите, что последовательность содержит бесконечно много степеней двойки.
Последовательности положительных чисел (xn) и (yn) удовлетворяют условиям при всех натуральных n. Докажите, что если все числа x1, x2, y1, y2 больше 1, то xn > yn при каком-нибудь натуральном n.
|
|
Сложность: 4+ Классы: 10,11
|
День в Анчурии может быть либо ясным, когда весь день солнце, либо дождливым, когда весь день льет дождь. И если сегодня день не такой, как вчера, то анчурийцы говорят, что сегодня погода изменилась. Однажды анчурийские ученые установили, что 1 января день всегда ясный, а каждый следующий день в январе будет ясным, только если ровно год назад в этот день погода изменилась. В 2015 году январь
в Анчурии был весьма разнообразным: то солнце, то дожди. В каком году погода в январе впервые будет меняться ровно так же, как в январе 2015 года?
|
|
Сложность: 4+ Классы: 9,10,11
|
Найдите все бесконечные ограниченные последовательности натуральных чисел
a1, a2, a3, ..., для всех членов которых, начиная с третьего, выполнено
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 112]