ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На центральном телеграфе стоят разменные автоматы, которые меняют 20 коп. на 15, 2, 2 и 1; 15 коп. на 10, 2, 2 и 1; 10 коп. на 3, 3, 2 и 2. Петя разменял 1 руб. 25 коп. серебром на медь. Вася, посмотрев на результат, сказал: "Я точно знаю, какие у тебя были монеты" и назвал их. Назовите и вы.

Вниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

ВверхВниз   Решение


Докажите, что высота прямоугольного треугольника, опущенная на гипотенузу, равна произведению катетов, делённому на гипотенузу.

ВверхВниз   Решение


Докажите, что существует такой набор из 100 различных натуральных чисел c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма     есть квадрат целого числа.

ВверхВниз   Решение


Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

ВверхВниз   Решение


В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



Задача 65265

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 8,9,10,11

Петя предлагает Васе сыграть в следующую игру. Петя дает Васе две коробки с конфетами. В каждой из двух коробок шоколадные конфеты и карамельки. Всего в обеих коробках 25 конфет. Петя предлагает Васе взять из каждой коробки по конфете. Если обе конфеты окажутся шоколадными, то Вася выиграл. В противном случае выиграл Петя. Вероятность того, что Васе достанутся две карамельки, равна 0,54. У кого больше шансов на победу?

Прислать комментарий     Решение

Задача 65266

Темы:   [ Дискретное распределение ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 3+
Классы: 8,9,10,11

На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?

Прислать комментарий     Решение

Задача 65267

Темы:   [ Дискретное распределение ]
[ Системы счисления (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Имеются два симметричных кубика. Можно ли так написать на их гранях некоторые числа, чтобы сумма очков при бросании принимала значения 1, 2, ..., 36 с равными вероятностями?

Прислать комментарий     Решение

Задача 65268

Темы:   [ Дискретное распределение ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

В классе 25 детей. Для дежурства наугад выбирают двоих. Вероятность того, что оба дежурных окажутся мальчиками, равна 3/25.
Сколько в классе девочек?

Прислать комментарий     Решение

Задача 65270

Темы:   [ Дискретное распределение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

В классе меньше 30 человек. Вероятность того, что наугад выбранная девочка отличница, равна 3/13, а вероятность того, что наугад выбранный мальчик – отличник, равна 4/11. Сколько в классе отличников?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .