ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Автор: Лифшиц Ю.

Шестнадцать футбольных команд из шестнадцати стран провели турнир – каждая команда сыграла с каждой из остальных по одному матчу.
Могло ли оказаться так, что каждая команда сыграла во всех странах, кроме своей родины?

Вниз   Решение


Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

ВверхВниз   Решение


Основание правильной четырёхугольной пирамиды – квадрат со стороной 8. Высота пирамиды равна 9. Через сторону основания проведена плоскость, образующая с плоскостью основания угол, равный arctg . Найдите площадь сечения пирамиды этой плоскостью.

ВверхВниз   Решение



В правильной шестиугольной пирамиде, у которой боковые стороны - квадраты, проведите плоскость через сторону нижнего основания и противолежащую ей сторону верхнего основания. Найдите площадь построенного сечения, если сторона основания равна a.

ВверхВниз   Решение


В турнире каждый участник встретился с каждым из остальных один раз. Каждую встречу судил один арбитр, и все арбитры судили разное количество встреч. Игрок Иванов утверждает, что все его встречи судили разные арбитры. То же самое утверждают о себе игроки Петров и Сидоров. Может ли быть, что никто из них не ошибается?

ВверхВниз   Решение


В языке Древнего Племени алфавит состоит всего из двух букв: "М" и "О". Два слова являются синонимами, если одно из другого можно получить при помощи исключения или добавления буквосочетаний "МО" и "ООММ", повторяемых в любом порядке и любом количестве. Являются ли синонимами в языке Древнего Племени слова "ОММ" и "МОО"?

ВверхВниз   Решение


Высота равнобедренной трапеции ABCD с основаниями AD и BC равна 4 , диагонали трапеции пересекаются в точке O , AOD = 120o . Найдите среднюю линию трапеции.

ВверхВниз   Решение


Найдите внутри треугольника ABC все такие точки P, чтобы общие хорды каждой пары окружностей, построенных на отрезках PA, PB и PC как на диаметрах, были равны.

ВверхВниз   Решение


В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены высоты  AA1, BB1 и CC1. Докажите, что периметр треугольника A1B1C1 не превосходит половины периметра треугольника ABC.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


Маркетинговая компания решила провести социологическое исследование, чтобы узнать, какая часть городского населения узнаёт новости в основном из радиопередач, какая часть – из телепрограмм, какая часть – из прессы, а какая – по интернету. Для исследования было решено использовать выборку из 2000 случайно выбранных владельцев адресов электронной почты. Можно ли считать такую выборку репрезентативной?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



Задача 65279

Темы:   [ Дискретное распределение ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 8,9,10,11

Вероятность того, что купленная лампочка будет работать, равна 0,95.
Сколько нужно купить лампочек, чтобы с вероятностью 0,99 среди них было не менее пяти работающих?

Прислать комментарий     Решение

Задача 65280

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 8,9,10,11

У охотника есть две собаки. Однажды, заблудившись в лесу, он вышел на развилку. Охотник знает, что каждая из собак с вероятностью p выберет дорогу домой. Он решил выпустить собак по очереди. Если обе выберут одну и ту же дорогу, он пойдёт за ними; если же они разделятся, охотник выберет дорогу, кинув монетку. Увеличит ли таким способом охотник свои шансы выбрать дорогу домой, по сравнению с тем, как если бы у него была одна собака?

Прислать комментарий     Решение

Задача 65282

Тема:   [ Математическая статистика ]
Сложность: 3+
Классы: 8,9,10,11

Маркетинговая компания решила провести социологическое исследование, чтобы узнать, какая часть городского населения узнаёт новости в основном из радиопередач, какая часть – из телепрограмм, какая часть – из прессы, а какая – по интернету. Для исследования было решено использовать выборку из 2000 случайно выбранных владельцев адресов электронной почты. Можно ли считать такую выборку репрезентативной?

Прислать комментарий     Решение

Задача 65283

Темы:   [ Дискретное распределение ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 8,9,10,11

В ящике 2009 носков – синих и красных. Может ли синих носков быть столько, чтобы вероятность вытащить наудачу два носка одного цвета была равна 0,5?

Прислать комментарий     Решение

Задача 65285

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .