ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Отрезки AB и CD пересекаются в точке O, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок  AC = 10?

Вниз   Решение


Отрезки AB и CD пересекаются в точке O. Докажите равенство треугольников ACO и DBO, если известно, что  ∠ACO = ∠DBO  и  BO = OC.

ВверхВниз   Решение


Через середину отрезка AB проведена прямая, перпендикулярная прямой AB. Докажите, что каждая точка этой прямой одинаково удалена от точек A и B.

ВверхВниз   Решение


На окружности S с диаметром AB взята точка C, из точки C опущен перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и окружности S1 с центром C и радиусом CH делит отрезок CH пополам.

ВверхВниз   Решение


Три окружности попарно пересекаются в точках A1 и A2B1 и B2C1 и C2. Докажите, что A1B2 . B1C2 . C1A2 = A2B1 . B2C1 . C2A1.

ВверхВниз   Решение



Все ребра правильной четырехугольной пирамиды равны a. Через сторону основания и середину одного из противоположных боковых ребер проведена плоскость. Найдите площадь полученного сечения.

ВверхВниз   Решение



В прямом параллелепипеде ABCDA1B1C1D1 с основаниями ABCD и A1B1C1D1 известно, что AB = 29, AD = 36, BD = 25, AA1 = 48. Найдите площадь сечения AB1C1D.

ВверхВниз   Решение


В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что каждая мама с вероятностью ½ голосует за лучший спектакль и с вероятностью ½ – за спектакль, в котором участвует её ребенок.
  а) Найдите вероятность того, что лучший спектакль победит с перевесом голосов.
  б) Тот же вопрос, если в финал вышло больше двух классов.

ВверхВниз   Решение


У Аси и Васи есть три монеты. На разных сторонах одной монеты изображены ножницы и бумага, на сторонах другой монеты – камень и ножницы, на сторонах третьей – бумага и камень. Ножницы побеждают бумагу, бумага побеждает камень и камень побеждает ножницы. Сначала Ася выбирает себе монетку, потом Вася, потом они бросают свои монетки и смотрят, кто выиграл (если выпало одно и то же, то – ничья). Так они делают много раз. Есть ли возможность у Васи выбирать монету так, чтобы вероятность его выигрыша была выше, чем у Аси?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



Задача 65277

Темы:   [ Дискретное распределение ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 8,9,10,11

А и Б стреляют в тире, но у них есть только один шестизарядный револьвер с одним патроном. Поэтому они договорились по очереди случайным образом крутить барабан и стрелять. Начинает А. Найдите вероятность того, что выстрел произойдёт, когда револьвер будет у А.

Прислать комментарий     Решение

Задача 65284

Темы:   [ Теория вероятностей (прочее) ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 8,9,10,11

У Аси и Васи есть три монеты. На разных сторонах одной монеты изображены ножницы и бумага, на сторонах другой монеты – камень и ножницы, на сторонах третьей – бумага и камень. Ножницы побеждают бумагу, бумага побеждает камень и камень побеждает ножницы. Сначала Ася выбирает себе монетку, потом Вася, потом они бросают свои монетки и смотрят, кто выиграл (если выпало одно и то же, то – ничья). Так они делают много раз. Есть ли возможность у Васи выбирать монету так, чтобы вероятность его выигрыша была выше, чем у Аси?

Прислать комментарий     Решение

Задача 65297

Темы:   [ Дискретное распределение ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9,10,11

На новогоднюю ёлку повесили 100 лампочек в ряд. Затем лампочки стали переключаться по следующему алгоритму: зажглись все, через секунду погасла каждая вторая лампочка, ещё через секунду каждая третья лампочка переключилась: если горела, то погасла и наоборот. Через секунду каждая четвёртая лампочка переключилась, ещё через секунду – каждая пятая и так далее. Через 100 секунд всё закончилось. Найдите вероятность того, что случайно выбранная после этого лампочка горит (лампочки не перегорают и не бьются).

Прислать комментарий     Решение

Задача 65298

Тема:   [ Дискретное распределение ]
Сложность: 3
Классы: 8,9,10,11

В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что каждая мама с вероятностью ½ голосует за лучший спектакль и с вероятностью ½ – за спектакль, в котором участвует её ребенок.
  а) Найдите вероятность того, что лучший спектакль победит с перевесом голосов.
  б) Тот же вопрос, если в финал вышло больше двух классов.

Прислать комментарий     Решение

Задача 65300

Темы:   [ Математическая статистика ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10,11

Служить на подводной лодке может матрос, рост которого не превышает 168 см. Есть четыре команды А, Б, В и Г. Все матросы в этих командах хотят служить на подводной лодке и прошли строгий отбор. Остался последний отбор – по росту.
  В команде А средний рост матросов равен 166 см.
  В команде Б медиана роста матросов равна 167 см.
  В команде В самый высокий матрос имеет рост 169 см.
  В команде Г мода роста матросов равна 167 см.
В какой команде по крайней мере половина матросов точно может служить на подводной лодке?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 144]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .