ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 94]      



Задача 64644

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 8,9

Клетки таблицы 5×7 заполнены числами так, что в каждом прямоугольнике 2×3 (вертикальном или горизонтальном) сумма чисел равна нулю. Заплатив 100 рублей, можно выбрать любую клетку и узнать, какое число в ней записано. Какого наименьшего числа рублей хватит, чтобы наверняка определить сумму всех чисел таблицы?

Прислать комментарий     Решение

Задача 65387

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Шахматная раскраска ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10,11

Какое наименьшее количество квадратиков 1×1 надо нарисовать, чтобы получилось изображение квадрата 25×25, разделённого на 625 квадратиков 1×1?

Прислать комментарий     Решение

Задача 65871

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 8,9,10,11

В каждой клетке доски 8×8 написали по одному натуральному числу. Оказалось, что при любом разрезании доски на доминошки суммы чисел во всех доминошках будут разные. Может ли оказаться, что наибольшее записанное на доске число не больше 32?

Прислать комментарий     Решение

Задача 98074

Темы:   [ Наглядная геометрия в пространстве ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
[ Прямоугольные параллелепипеды ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Фомин С.В.

В нашем распоряжении имеются "кирпичи", имеющие форму, которая получается следующим образом: приклеиваем к одному единичному кубу по трём его граням, имеющим общую вершину, ещё три единичных куба, так что склеиваемые грани полностью совпадают. Можно ли сложить прямоугольный параллелепипед 11×12×13 из таких "кирпичей"?

Прислать комментарий     Решение

Задача 98370

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

На клетчатой доске 5×5 расставили максимальное число шахматных коней так, чтобы они не били друг друга.
Докажите, что такая расстановка единственна.

 
Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .