Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 133]
|
|
Сложность: 3+ Классы: 10,11
|
Сколько различных целочисленных решений имеет неравенство |x| + |y| < 100?
Длины сторон некоторого треугольника и диаметр вписанной в него
окружности являются четырьмя последовательными членами арифметической
прогрессии. Найдите все такие треугольники.
|
|
Сложность: 4- Классы: 7,8,9
|
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый
фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее
количество фонарей может быть на дороге, если известно, что после
выключения любого фонаря дорога будет освещена уже не полностью?
|
|
Сложность: 4- Классы: 9,10,11
|
Василиса Премудрая расставляет все натуральные числа от 1 до n², где n > 1, в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?
|
|
Сложность: 4- Классы: 7,8,9
|
При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 133]