ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Трапеция ABCD вписана в окружность. Другая окружность, проходящая через точки A и C, касается прямой CD и пересекает в точке E продолжение основания  BC = 7  за точку B. Найдите BE, если  AE = 12.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

Вниз   Решение


На основании BC трапеции ABCD взята точка E, лежащая на одной окружности с точками A, C и D. Другая окружность, проходящая через точки A, B и C, касается прямой CD. Найдите BC, если  AB = 12  и  BE : EC = 4 : 5.  Найдите все возможные значения отношения радиуса первой окружности к радиусу второй при данных условиях.

ВверхВниз   Решение


Даны две окружности, пересекающиеся в точках $P$ и $Q$. Произвольная прямая $l$, проходящая через $Q$, повторно пересекает окружности в точках $A$ и $B$. Прямые, касающиеся окружностей в точках $A$ и $B$, пересекаются в точке $C$, а биссектриса угла $CPQ$ пересекает прямую $AB$ в точке $D$. Докажите, что все точки $D$, которые можно так получить, выбирая по-разному прямую $l$, лежат на одной окружности.

ВверхВниз   Решение


Автор: Храбров А.

Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем 1/2016.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 60975

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

Пусть  P(x) = (2x² – 2x + 1)17(3x² – 3x + 1)17.  Найдите
  a) сумму коэффициентов этого многочлена;
  б) суммы коэффициентов при чётных и нечётных степенях x.

Прислать комментарий     Решение

Задача 65470

Темы:   [ Свойства коэффициентов многочлена ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 10,11

Автор: Храбров А.

Все коэффициенты некоторого непостоянного многочлена целые и по модулю не превосходят 2015.
Докажите, что любой положительный корень этого многочлена больше чем 1/2016.

Прислать комментарий     Решение

Задача 65854

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любая натуральная степень многочлена  P(x) = x4 + x³ – 3x² + x + 2  имеет хотя бы один отрицательный коэффициент.

Прислать комментарий     Решение

Задача 76541

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 8,9,10

В каком из выражений:  (1 – x² + x³)1000,   (1 + x² – x³)1000  после раскрытия скобок и приведения подобных членов больший коэффициент при x20?
Прислать комментарий     Решение


Задача 98055

Темы:   [ Свойства коэффициентов многочлена ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Фомин Д.

Докажите, что при любом натуральном n найдётся ненулевой многочлен P(x) с коэффициентами, равными 0, –1, 1, степени не больше 2n, который делится на
(x – 1)n.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .