Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

Вниз   Решение


Докажите, что если  n > 2,  то число всех правильных несократимых дробей со знаменателем n чётно.

ВверхВниз   Решение


Найдите все несократимые дроби, увеличивающиеся вдвое после увеличения и числителя и знаменателя на 10.

ВверхВниз   Решение


Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.

ВверхВниз   Решение


Иногда, вычитая дроби, можно вычитать их числители и складывать знаменатели. Например:  
Для каких дробей это возможно?

ВверхВниз   Решение


Из спичек выложено неверное равенство (см. рисунок). Покажите, как переложить одну спичку, чтобы получилось равенство, в котором значения левой и правой частей различаются меньше, чем на 0,1.

ВверхВниз   Решение


Какое наименьшее число участников может быть в математическом кружке, если известно, что девочек в нем меньше 50%, но больше 40%?

ВверхВниз   Решение


Числитель и знаменатель дроби – натуральные числа, дающие в сумме 101. Известно, что дробь не превосходит ⅓.
Укажите наибольшее возможное значение такой дроби.

ВверхВниз   Решение


Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 127]      



Задача 65493

Темы:   [ Обыкновенные дроби ]
[ Квадратные уравнения. Формула корней ]
Сложность: 3+
Классы: 5,6,7

Замените $\ast$ одинаковыми числами так, чтобы равенство стало верным: $$\frac{20}{\ast} - \frac{\ast}{15} = \frac{20}{15}$$
Прислать комментарий     Решение


Задача 65605

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
[ Перебор случаев ]
Сложность: 3+
Классы: 5,6,7

Впишите вместо звёздочек шесть различных цифр так, чтобы все дроби были несократимыми, а равенство верным:  .

Прислать комментарий     Решение

Задача 65634

Темы:   [ Обыкновенные дроби ]
[ Арифметическая прогрессия ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Мальвина записала по порядку 2016 обыкновенных правильных дробей: ½, ⅓, ⅔, ¼, 2/4, ¾, ... (в том числе, и сократимые). Дроби, значение которых меньше чем ½, она покрасила в красный цвет, а остальные дроби – в синий. На сколько количество красных дробей меньше количества синих?

Прислать комментарий     Решение

Задача 65954

Темы:   [ Обыкновенные дроби ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В выражении   10 : 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1   расставили скобки так, что значение выражения оказалось целым числом.
Какое наименьшее число могло получиться?

Прислать комментарий     Решение

Задача 66062

Темы:   [ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Можно ли в равенстве     заменить звездочки цифрами от 1 до 9, взятыми по одному разу, так, чтобы равенство стало верным?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .