ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.) Постройте прямоугольный треугольник по катету и медиане, проведённой из вершины прямого угла. С помощью циркуля и линейки постройте треугольник по трём высотам.
Два выпуклых многоугольника A1A2...An и B1B2...Bn (n ≥ 4) таковы, что каждая сторона первого больше соответствующей стороны второго. Продолжения равных хорд AB и CD окружности соответственно за
точки B и C пересекаются в точке P. Какое наибольшее число острых углов может иметь выпуклый
многоугольник?
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника. Концы отрезка AB принадлежат граням двугранного угла, равного ϕ . Расстояния AA1 и BB1 от точек A и B до ребра двугранного угла равны a и b соответственно, A1B1 = c . Найдите AB . Вершины A и B правильного треугольника ABC
лежат на окружности S, а вершина C — внутри этой окружности.
Точка D лежит на окружности S, причем BD = AB.
Прямая CD пересекает S в точке E. Докажите, что длина
отрезка EC равна радиусу окружности S.
На арене круглого цирка радиуса 10 метров бегает лев. Двигаясь по ломаной
линии, он пробежал 30 километров. Докажите, что любой выпуклый четырёхугольник можно разрезать на пять многоугольников, каждый из которых имеет ось симметрии.
Пусть f(x) – некоторый многочлен ненулевой степени.
В треугольнике ABC угол A наименьший. Через вершину A проведена прямая,
пересекающая отрезок BC. Она пересекает описанную окружность в точке X, а
серединные перпендикуляры к сторонам AC и AB — в точках B1 и C1.
Прямые BC1 и CB1 пересекаются в точке Y. Докажите, что BY + CY = AX.
Один угол треугольника равен 60°, а лежащая против этого угла сторона равна трети периметра треугольника. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
Углы треугольника равны α, β и γ, а периметр равен P. Найдите стороны треугольника.
Биссектриса, проведённая из вершины N треугольника MNP, делит сторону MP на отрезки, равные 28 и 12.
Один угол треугольника равен 60°, а лежащая против этого угла сторона равна трети периметра треугольника.
С помощью циркуля и линейки проведите через вершину треугольника прямую, делящую периметр треугольника пополам.
Докажите, что прямая, делящая пополам периметр и площадь треугольника, проходит через центр его вписанной окружности.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке