ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?

   Решение

Задачи

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 353]      



Задача 65497

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На школьный Новогодний праздник в городе Лжерыцарске пришёл 301 ученик. Из них некоторые всегда говорят правду, а остальные – всегда лгут. Каждый из 200 школьников сказал: "Если я выйду из зала, то среди оставшихся учеников большинство будет лжецами". Каждый из остальных школьников заявил: "Если я выйду из зала, то среди оставшихся учеников лжецов будет вдвое больше, чем говорящих правду". Сколько лжецов было на празднике?

Прислать комментарий     Решение

Задача 65600

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3+
Классы: 5,6,7

Робот придумал шифр для записи слов: заменил некоторые буквы алфавита однозначными или двузначными числами, используя только цифры 1, 2 и 3 (разные буквы он заменял разными числами). Сначала он записал шифром сам себя:  РОБОТ = 3112131233.  Зашифровав слова КРОКОДИЛ и БЕГЕМОТ, он с удивлением заметил, что числа вышли совершенно одинаковыми! Потом Робот записал слово МАТЕМАТИКА. Напишите число, которое у него получилось.

Прислать комментарий     Решение

Задача 65628

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 5,6,7

На кружок пришли дети из двух классов: Ваня, Дима, Егор, Инна, Леша, Саша и Таня. На вопрос: "Сколько здесь твоих одноклассников?" каждый честно ответил "Двое" или "Трое". Но мальчики думали, что спрашивают только про мальчиков-одноклассников, а девочки правильно понимали, что спрашивают про всех. Кто Саша – мальчик или девочка?

Прислать комментарий     Решение

Задача 65637

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 6,7,8

Автор: Акопян Э.

Мальвина записала равенство  МА·ТЕ·МА·ТИ·КА = 2016000  и предложила Буратино заменить одинаковые буквы одинаковыми цифрами, разные буквы – разными цифрами, чтобы равенство стало верным. Есть ли у Буратино шанс выполнить задание?

Прислать комментарий     Решение

Задача 65666

Тема:   [ Математическая логика (прочее) ]
Сложность: 3+
Классы: 7,8,9

За круглым столом сидят 10 человек, каждый из которых либо рыцарь, который всегда говорит правду, либо лжец, который всегда лжёт. Двое из них заявили: "Оба моих соседа – лжецы", а остальные восемь заявили: "Оба моих соседа – рыцари". Сколько рыцарей могло быть среди этих 10 человек?

Прислать комментарий     Решение

Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 353]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .