ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC на продолжении медианы CM за точку C отметили точку K так, что  AM = CK.  Известно, что угол BMC равен 60°.
Докажите, что  AC = BK.

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 239]      



Задача 65556

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

Прислать комментарий     Решение

Задача 65667

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
[ Признаки и свойства параллелограмма ]
[ Центральная симметрия помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 7,8,9

На медиане AM треугольника ABC нашлась такая точка K, что  AK = BM.  Кроме того,  ∠AMC = 60°.  Докажите, что  AC = BK.

Прислать комментарий     Решение

Задача 65672

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC на продолжении медианы CM за точку C отметили точку K так, что  AM = CK.  Известно, что угол BMC равен 60°.
Докажите, что  AC = BK.

Прислать комментарий     Решение

Задача 65836

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9,10

В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к стороне AB пересекает прямую AC в точке N. Серединный перпендикуляр к стороне AC пересекает прямую AB в точке M. Докажите, что  CB = MN.

Прислать комментарий     Решение

Задача 66133

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 7,8

В выпуклом четырёхугольнике ABCD диагонали АС и BD равны, а серединный перпендикуляр к стороне ВС проходит через середину стороны AD.
Могут ли длины всех сторон четырёхугольника быть различными?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .