ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали? |
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 1110]
а) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце. Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 2×2, который тоже не приводится. б) В таблице m×n расставлены знаки "+" и "–". За один ход разрешается поменять знаки на противоположные в любой строке или столбце или на любой диагонали (угловые клетки тоже считаются диагоналями). Докажите, что если таблица такими действиями не приводится к таблице из одних плюсов, то в ней есть квадрат 4×4, который тоже не приводится.
За некоторое время мальчик проехал на велосипеде целое число раз по периметру квадратной школы в одном направлении с постоянной по величине скоростью 10 км/ч. В это же время по периметру школы прогуливался его папа со скоростью 5 км/ч, при этом он мог менять направление движения. Папа видел мальчика в те и только те моменты, когда они находились на одной стороне школы. Мог ли папа видеть мальчика больше половины указанного времени?
а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
В прямоугольной таблице произведение суммы чисел любого столбца на сумму чисел
любой строки равно числу, стоящему на их пересечении.
По аллее длиной 100 метров идут три человека со скоростями 1, 2 и 3 км/ч. Дойдя до конца аллеи, каждый из них поворачивает и идёт назад с той же скоростью. Доказать, что найдётся отрезок времени в 1 минуту, когда все трое будут идти в одном направлении.
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|