Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Найдите расстояние от вершины A до прямой BE.

Вниз   Решение


Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?

ВверхВниз   Решение


На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.

ВверхВниз   Решение


Все точки окружности окрашены произвольным образом в два цвета.
Докажите, что найдётся равнобедренный треугольник с вершинами одного цвета, вписанный в эту окружность.

ВверхВниз   Решение


Середины сторон выпуклого пятиугольника последовательно соединены отрезками. Найдите периметр полученного пятиугольника, если сумма всех диагоналей данного равна a.

ВверхВниз   Решение


Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
На какие отрезки делит вторую сторону точка касания?

ВверхВниз   Решение


Можно ли вместо звёздочек вставить в выражение  НОК(*, *, *) – НОК(*, *, *) = 2009  в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?

ВверхВниз   Решение


Площадь треугольника ABC равна S, $ \angle$BAC = $ \alpha$, $ \angle$BCA = $ \gamma$. Найдите AB.

ВверхВниз   Решение


На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты.
Какое наибольшее количество чисел может быть записано?

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 275]      



Задача 64442

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Наибольший общий делитель натуральных чисел a, b будем обозначать  (a, b).  Пусть натуральное число n таково, что
(n, n + 1) < (n, n + 2) < ... < (n, n + 35).  Докажите, что  (n, n + 35) < (n, n + 36).

Прислать комментарий     Решение

Задача 64620

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 8,9,10

Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и N, где  N > 5.  Какое наименьшее значение может иметь число N?

Прислать комментарий     Решение

Задача 64951

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?

Прислать комментарий     Решение

Задача 65064

Темы:   [ НОД и НОК. Взаимная простота ]
[ Четность и нечетность ]
[ Признаки делимости на 3 и 9 ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Можно ли вместо звёздочек вставить в выражение  НОК(*, *, *) – НОК(*, *, *) = 2009  в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?

Прислать комментарий     Решение

Задача 65906

Темы:   [ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты.
Какое наибольшее количество чисел может быть записано?

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 275]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .