ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c. Существует ли такой выпуклый пятиугольник, от которого некоторая прямая отрезает подобный ему пятиугольник?
На высоте AH треугольника ABC взята точка M. Докажите, что AB2 - AC2 = MB2 - MC2.
Все точки окружности окрашены произвольным образом в два цвета.
Середины сторон выпуклого пятиугольника последовательно соединены отрезками. Найдите периметр полученного пятиугольника, если сумма всех диагоналей данного равна a.
Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1. Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?
Площадь треугольника ABC равна S,
На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты. |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 275]
Наибольший общий делитель натуральных чисел a, b будем обозначать (a, b). Пусть натуральное число n таково, что
Учитель записал Пете в тетрадь четыре различных натуральных числа. Для каждой пары этих чисел Петя нашёл их наибольший общий делитель. У него получились шесть чисел: 1, 2, 3, 4, 5 и N, где N > 5. Какое наименьшее значение может иметь число N?
Сумма десяти натуральных чисел равна 1001. Какое наибольшее значение может принимать НОД (наибольший общий делитель) этих чисел?
Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?
На доске записаны двузначные числа. Каждое число составное, но любые два числа взаимно просты.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 275]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке