ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 289]      



Задача 61076

Темы:   [ Классические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что при любых вещественных aj, bj  (1 ≤ jn)  выполняется неравенство

Прислать комментарий     Решение

Задача 64802

Темы:   [ Ломаные ]
[ Неравенство треугольника (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Две точки окружности соединили ломаной, длина которой меньше диаметра окружности.
Докажите, что существует диаметр, не пересекающий эту ломаную.

Прислать комментарий     Решение

Задача 64847

Темы:   [ Вписанные и описанные многоугольники ]
[ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3+
Классы: 8,9

Докажите, что в любом описанном около окружности многоугольнике найдутся три стороны, из которых можно составить треугольник.

Прислать комментарий     Решение

Задача 65915

Темы:   [ Тетраэдр (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 10,11

Вася разобрал каркас треугольной пирамиды в кабинете математики и хочет из её шести рёбер составить два треугольника так, чтобы каждое ребро являлось стороной ровно одного треугольника. Всегда ли Вася сможет это сделать?

Прислать комментарий     Решение

Задача 66160

Темы:   [ Многочлены (прочее) ]
[ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .