ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?

   Решение

Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1027]      



Задача 65608

Темы:   [ Исследование квадратного трехчлена ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10,11

Известно, что  b – c > a  и  а ≠ 0.  Обязательно ли уравнение  ax² + bx + c = 0  имеет два корня?

Прислать комментарий     Решение

Задача 65632

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8

Автор: Фольклор

Мальвина велела Буратино разрезать квадрат на 7 прямоугольников (необязательно различных), у каждого из которых одна сторона в два раза больше другой. Выполнимо ли это задание?

Прислать комментарий     Решение

Задача 65717

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9,10

Автор: Фольклор

Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?

Прислать комментарий     Решение

Задача 65959

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?

Прислать комментарий     Решение

Задача 66390

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 5,6,7

Лист бумаги имеет форму круга. Можно ли провести на нем пять отрезков, каждый из которых соединяет две точки на границе листа так, чтобы среди частей, на которые эти отрезки делят лист, нашлись пятиугольник и два четырехугольника?
Прислать комментарий     Решение


Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .