ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 102]      



Задача 55204

Темы:   [ Неравенства с площадями ]
[ Параллелограмм Вариньона ]
[ Отношение площадей подобных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

Пусть E, F, G, H – середины сторон AB, BC, CD, DA выпуклого четырёхугольника ABCD. Докажите, что  SABCD ≤ EG·HF.

Прислать комментарий     Решение

Задача 115631

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Теорема Пифагора (прямая и обратная) ]
[ Отношение площадей подобных треугольников ]
[ Площадь четырехугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Диагонали AC и BD вписанного в окружность четырёхугольника пересекаются в точке Q под прямым углом. Прямые AB и CD пересекаются в точке P. Известно, что  BC = 5,  AD = 10,  BQ = 3.  Найдите AP.

Прислать комментарий     Решение

Задача 53212

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Теорема косинусов ]
[ Отношение площадей подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 4-
Классы: 8,9

Дан треугольник ABC. На стороне BC взята точка P, а на стороне AC взята точка M, причём  ∠APB = ∠BMA = 45°.  Отрезки AP и BM пересекаются в точке O. Известно,что площади треугольников BOP и AOM равны между собой,  BC = 1,  BO = .  Найдите площадь треугольника ABC.

Прислать комментарий     Решение

Задача 55397

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вспомогательная окружность ]
[ Отношение площадей подобных треугольников ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки E и F, причём  ∠EAF = 45°.  Отрезки AE и AF пересекают диагональ BD в точках P и Q.
Докажите, что  SAEF = 2SAPQ.

Прислать комментарий     Решение

Задача 66085

Темы:   [ Вписанные и описанные окружности ]
[ Отношение площадей треугольников с общим углом ]
[ Отношение площадей подобных треугольников ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Точка O – центр описанной окружности Ω остроугольного треугольника ABC. Описанная окружность ω треугольника AOC вторично пересекает стороны AB и BC в точках E и F. Оказалось, что прямая EF делит площадь треугольника ABC пополам. Найдите угол B.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .