|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть f(x) – некоторый многочлен ненулевой степени.
|
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 420]
При каких n многочлен (x + 1)n + xn + 1 делится на:
а) xn + 1 = б) xn + 1 = sin xn, x0 = a в) xn + 1 =
Найдите все такие a и b, что
Исходно на доске написаны многочлены x³ – 3x² + 5 и x² – 4x. Если на доске уже написаны многочлены f(x) и g(x), разрешается дописать на неё многочлены f(x) ± g(x), f(x)g(x), f(g(x)) и cf(x), где c – произвольная (не обязательно целая) константа. Может ли на доске после нескольких операций появиться многочлен вида xn – 1 (при натуральном n)?
Илья Муромец встречает трёхголового Змея Горыныча. Каждую минуту Илья
отрубает одну голову Змею. Пусть x – живучесть Змея (x > 0). Вероятность ps того, что на месте отрубленной головы вырастет s новых голов (s = 0, 1, 2), равна
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 420] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|