ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 416]      



Задача 98182

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Разрывы функций ]
Сложность: 3+
Классы: 9,10,11

Существует ли кусочно-линейная функция f, определённая на отрезке  [–1, 1]  (включая концы), для которой  f(f(x))= – x  при всех x?
(Функция называется кусочно-линейной, если её график есть объединение конечного числа точек и интервалов прямой; она может быть разрывной.)
Прислать комментарий     Решение


Задача 98217

Темы:   [ Исследование квадратного трехчлена ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
Сложность: 3+
Классы: 9,10

Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

Прислать комментарий     Решение

Задача 98221

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
[ Рациональные и иррациональные числа ]
[ Обыкновенные дроби ]
[ Уравнения с модулями ]
[ Обратный ход ]
Сложность: 3+
Классы: 8,9,10

Автор: Шабат Г.Б.

{an} – последовательность чисел между 0 и 1, в которой следом за x идёт  1 – |1 – 2x|.
  а) Докажите, что если a1 рационально, то последовательность, начиная с некоторого места, периодическая.
  б) Докажите, что если последовательность, начиная с некоторого места, периодическая, то a1 рационально.

Прислать комментарий     Решение

Задача 98455

Темы:   [ Неравенства для площади треугольника ]
[ Площадь треугольника (через высоту и основание) ]
[ Монотонность, ограниченность ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 3+
Классы: 8,9

Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC.
  а) Докажите, что площадь треугольника A'B'C' не больше половины площади треугольника ABC.
  б) Докажите, что площадь треугольника A'B'C' равна четверти площади треугольника ABC тогда и только тогда, когда хотя бы одна из точек A', C' совпадает с серединой соответствующей стороны.

Прислать комментарий     Решение

Задача 98588

Темы:   [ Тригонометрические неравенства ]
[ Классические неравенства (прочее) ]
[ Монотонность, ограниченность ]
Сложность: 3+
Классы: 10,11

Автор: Колосов В.

Пусть x, y, z – любые числа из интервала  (0, π/2).  Докажите неравенство  

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .