ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На окружности радиуса R с диаметром AD и центром O выбраны точки B и С по одну сторону от этого диаметра. Около треугольников ABO и CDO описаны окружности, пересекающие отрезок BC в точках F и E. Докажите, что AF·DE = R². |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
На стороне BC равностороннего треугольника ABC как на диаметре внешним образом построена полуокружность, на которой взяты точки K и L, делящие полуокружность на три равные дуги. Докажите, что прямые AK и AL делят отрезок BC на равные части.
Прямая, проходящая через вершину B треугольника ABC, пересекает сторону AC в точке K, а описанную окружность в точке M.
На окружности радиуса R с диаметром AD и центром O выбраны точки B и С по одну сторону от этого диаметра. Около треугольников ABO и CDO описаны окружности, пересекающие отрезок BC в точках F и E. Докажите, что AF·DE = R².
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b.
Вписанная окружность треугольника ABC касается его сторон в точках A', B' и C'. Известно, что ортоцентры треугольников ABC и A'B'C' совпадают. Верно ли, что треугольник ABC – правильный?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке