|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Точки A и B лежат на гиперболе. Прямая AB пересекает асимптоты гиперболы в точках A1 и B1. а) Докажите, что AA1 = BB1 и AB1 = BA1. б) Докажите, что если прямая A1B1 касается гиперболы в точке X, то X — середина отрезка A1, B1. Пусть $AA_1$, $BB_1$, $CC_1$ – высоты треугольника $ABC$; $A_0$, $C_0$ – точки пересечения описанной окружности треугольника $A_1BC_1$ с прямыми $A_1B_1$ и $C_1B_1$ соответственно. Докажите, что прямые $AA_0$ и $CC_0$ пересекаются на медиане треугольника $ABC$ или параллельны ей. По трем прямолинейным дорогам с постоянными скоростями идут три пешехода. В начальный момент времени они не находились на одной прямой. Докажите, что они могут оказаться на одной прямой не более двух раз. Есть бумажный квадрат со стороной 2. Можно ли вырезать из него 12-угольник, у которого длины всех сторон равны 1, а все углы кратны 45°? Число p – корень кубического уравнения x³ + x – 3 = 0. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Решить уравнение x8 + 4x4 + x² + 1 = 0.
Найти все значения x и y, удовлетворяющие равенству xy + 1 = x + y.
Имеет ли отрицательные корни уравнение x4 – 4x³ – 6x² – 3x + 9 = 0?
Число p – корень кубического уравнения x³ + x – 3 = 0.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|