ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В комнате стоят 20 стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Каждый из сидящих заявил, что он сидит на синем стуле. Затем они как-то пересели, после чего половина из сидящих сказали, что сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь сидит на красных стульях? Решение |
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1311]
Замените в выражении ABC = DEF буквы цифрами так, чтобы равенство стало верным, использовав каждую цифру от 1 до 6 ровно один раз.
В ряд лежат 100 внешне одинаковых монет. Среди них ровно 26 фальшивых, причём они лежат подряд. Настоящие монеты весят одинаково, фальшивые – не обязательно одинаково, но они легче настоящих. Как за одно взвешивание на двухчашечных весах без гирь найти хотя бы одну фальшивую монету?
Квадрат 4 × 4 называется магическим, если в его клетках встречаются все числа от 1 до 16, а суммы чисел в столбцах, строках и двух диагоналях равны между собой. Шестиклассник Сеня начал составлять магический квадрат и поставил в какую-то клетку число 1. Его младший брат Лёня решил ему помочь и поставил числа 2 и 3 в клетки, соседние по стороне с числом 1. Сможет ли Сеня после такой помощи составить магический квадрат?
В комнате стоят 20 стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Каждый из сидящих заявил, что он сидит на синем стуле. Затем они как-то пересели, после чего половина из сидящих сказали, что сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь сидит на красных стульях?
В ряд записаны всевозможные правильные несократимые дроби, знаменатели которых не больше ста. Маша и Света ставят знаки "+" или "–' перед любой дробью, перед которой знак еще не стоит. Они делают это по очереди, но известно, что Маше придётся сделать последний ход и вычислить результат действий. Если он получится целым, то Света даст ей шоколадку. Сможет ли Маша получить шоколадку независимо от действий Светы?
Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1311] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|