ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Графы" (А. Савин) Статья "Элементы теории графов" (В. Фосс) Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некоторой стране есть 100 городов, которые связаны такой сетью дорог, что из любого города в любой другой можно проехать только одним способом без разворотов. Схема сети дорог известна, развилки и перекрестки сети необязательно являются городами, всякая тупиковая ветвь сети обязательно заканчивается городом. Навигатор может измерить длину пути по этой сети между любыми двумя городами. Можно ли за 100 таких измерений гарантированно определить длину всей сети дорог? Решение |
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 383]
Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.
На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.
а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 383] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|