ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Вспомогательные подобные треугольники
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$. Решение |
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 512]
На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные
n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке; б) если $CN$ – высота, то $ST$ проходит через середину $ML$.
В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.
На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что 1/PQ = 1/PB + 1/PC.
Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 512] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|